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Abstract The paper proposes a new manner to use application of Shannon Entropy
in similarity computation for any objects and any objects groups. In computation of
the chemical similarity cases the proposed formulas use the values of one or more
molecular descriptors, divided into classes (categories) by using a suitable criterion.
The paper proposes original criteria to made difference between ‘saturated’, ‘non-
saturated non-aromatic’ and ‘aromatic’ molecular fragments and between ‘hydrogen-
acceptor’ and ‘hydrogen-donor-acceptor’ fragments for the purpose of classifying
fragments into classes. According to the proposed formula two molecules A and B
are similar enough if the value of Shannon Entropy of A + B aggregate is close to the
value of Shannon Entropy of A molecule and close to the value of Shannon Entropy
of B molecule. The proposed similarity formula can be used as statistical correlation
index, useful if the number of values of two analyzed variables is unequal. The pro-
posed formula is useful in the quantitative evaluation of the ‘representative sample’
character of any ‘sample’. The paper presents the chemical similarity computation
in Zimelidine/Fluoxtine/Chloramphenicol/Crufomate/Phoxim group. For comparison
purposes, the paper also presents a Tanimoto coefficient calculation for the same mol-
ecules group. In addition, the paper presents two non-chemical examples regarding
‘Representative Sample Index’ calculation.
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1 Introduction

Similarity searching is one of the most widely applied approaches in chemical and
pharmaceutical research to select compounds with desired properties from large dat-
abases. This approach is based on the hypothesis ‘similar properties are the effect
of similar chemical structures’. If the ‘properties’ are ‘biochemical activities’ this
assertion is named ‘the QSAR axiom’ (QSAR means Quantitative Structure-Activity
Relationship). Frequently, this ‘axiom’ is challenged because some similar structures
present non-similar properties and some non-similar structures present similar prop-
erties.

Different methods have been developed for similarity searching when the mole-
cules are small enough. All similarity search approaches depend on the representation
of molecular structures and on the quantification of molecular similarity.

Molecular structure can be represented, for instance, by ‘fingerprint’ which is, in
fact, a matrix that records the number of occurrences of specific features in molecular
graph [1,2]. Fingerprints are usually compared by formula (1) of Tanimoto coefficient
[3].

T = nAB/ (nA + nB − nAB) (1)

In formula (1) nA is number of occurrences in the A molecule, nB is the number of
occurrences in the B molecule and nAB is the number of occurrences in the A mole-
cule and the B molecule. There are many other similarity metrics based on fingerprints
[4–6].

Despite of a large number of methods for the evaluation of molecular shape there
are only few methods which compute chemical similarity as ‘similarity of shape’.
These methods evaluate structural properties at each grid point of an orthogonal grid
placed around the molecules [7], evaluate common-overlap steric volume between
pairs of molecules [8], measure match between the electron densities of two analyzed
molecules [9,10] etc.

After computation of certain number of descriptors Di values, for two molecules
A and B, one can calculate the similarity of the analyzed molecules using Euclidian
distance ED.

ED =
[∑ (

DA
i − DB

i

)2
]1/2

(2)

The statistical correlation of descriptors used in formula (2) should be low and
the statistical distribution of descriptors values should be Gaussian. Mahalanobis dis-
tance [11] MD is less sensitive to these conditions because it includes the correlation
between descriptors. The term S in formula (3) is the covariance matrix.

MD =
[
(DA − DB)T S−1 (DA − DB)

]1/2
(3)

There are many papers in literature that describes the use of Shannon Entropy SE
[12] (usually named ‘Information Content’) as molecular descriptor, computed using
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the values of certain other descriptors and formula (4).

SE = −
k∑

i=1

ni/N ·Log (ni/N ) (4)

To apply formula (4) one must use an adequate criterion for putting a certain value
into certain class (category). In formula (4) N is the total number of the descriptor val-
ues and ni is the number of the values included in class i . The number kde f of defined
classes can be large, but formula (4) uses only non-empty classes (ni > 0, k ≤ kde f ).
The base of the logarithm is 2, Euler’s number e or 10.

If kde f < N the value of SE is within [0, Log kde f ] range, otherwise the value of
SE is within [0, Log N ] range. Consequently, the inequalities (5) are true.

0 ≤ SE ≤ min
(
Log kde f , Log N

)
(5)

If k = kde f and each class includes the same number of values then SE in formula
(4) has the maximum value. If k = 1 (all values are included within the same class)
then SE = 0, because nk = N .

If m = min(Log kde f , Log N ) the value of weighted Shannon Entropy WSE is
within [0, 1] range.

WSE = SE/m (m > 0) (6)

We can compute SE for any group of objects according to the values of certain mea-
sured common feature of the analyzed objects. For instance, we can compute SE for
a group of people using the values of height, weight, age, blood pressure etc. In addi-
tion, we observe that any object is, in fact, a collection of objects. A human body is a
collection of cells, a state is a collection of districts, an electronic device is a collection
of electronic pieces, a molecule is a collection of atoms/chemical bonds/topological
paths/electric charges etc. Consequently, we can compute SE for a human body, state,
electronic device, molecule etc.

According to this approach, Shannon Entropy measures, in chemistry field, the
‘diversity’ of atomic numbers, net charges, bond orders, length of topological paths,
atomic distances, atomic volumes etc. in the analyzed molecule. Recent papers pro-
pose using of Shannon Entropy for computing a certain ‘aromaticity descriptor’ [13]
and distributions of atom-centered feature pairs [14].

To compute ‘chemical similarity’ one can use the value of Shannon Entropy descrip-
tors in above Euclidian / Mahalanobis distance formulas (2) and (3).

Another manner [15] to use Shannon Entropy in evaluation of chemical similarity
is computation of ’Differential Shannon Entropy’ DSE.

DSE = SEAB − (SEA + SEB) /2 (7)

In formula (7) SEA and SEB are computed for molecules A and B and SEAB is
computed for virtual A + B aggregate. If SEAB is within [SEA, SEB] range the value
of DSE can be small, even null, despite of large difference |SEA − SEB|.

123



J Math Chem (2011) 49:2330–2344 2333

Using SE/Log N ratio (not SE/m ratio) instead SE one compute [15] the ‘weighted’
WDSE and the ‘Reciprocal Differential Shannon Entropy’ RDSE.

RDSE = 1/WDSE (8)

Similarity searching usually provides a ranking of compounds relative to chosen
reference molecule(s) [16–18].

This paper proposes a new manner to use Shannon Entropy in computation of
similarity, applicable to chemical similarity.

2 Methods and formulas

The number kde f of ascertained classes can be large. Using the same descriptor and
the same criterion, the descriptor values of the molecule A will be placed into kA
non-empty classes, the descriptor values of the molecule B will be placed into kB
non-empty classes and the descriptor values of the A + B aggregate will be placed into
kAB non-empty classes.

The inequalities in formula (9) are satisfied.

kA + kB ≥ kAB ≥ max (kA, kB) (9)

Using the values (divided in classes) of certain molecular descriptor the chemical
similarity SIM of two molecules A and B is computed by proposed formula (10),
which is a product of two ratios.

SIM = RA·RB (10)

where
if SEA ≤ SEAB then RA = SEA/SEAB else RA = SEAB/SEA
if SEB ≤ SEAB then RB = SEB/SEAB else RB = SEAB/SEB
SEA is computed by formula (4) using NA descriptor values of the molecule A
SEB is computed by formula (4) using NB descriptor values of the molecule B
SEAB is computed by formula (4) using NA + NB descriptor values of the A + B

aggregate.
The value of SIM is within [0, 1] range.
Two molecules are similar enough (high value of SIM) if the value of Shannon

Entropy SEAB of the A + B aggregate is close to the value of Shannon Entropy SEA
of the A molecule and Shannon Entropy SEB of the B molecule.

If difference |SEA − SEB| is large, the value of SIM is always low enough. If
difference |SEA − SEB| is small, the value of SIM can be high or low.

The SIM value for two isomers is, as a rule, high.
One can use formula (10) as statistical correlation index. Unlike Pearson [21],

Spearman [22] and Kendall [23] correlation indices, SIM can be computed even if
two analyzed variables don’t have the same number of values.
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If two or more descriptors are used the ‘total’ similarity SIMtotal should be evalu-
ated, in our opinion, by criterion (11).

SIMtotal = min (SIM1, SIM2, SIM3, . . . , SIMk) (11)

If the classes are defined beforehand, one can divide the molecules (objects) in classes
(categories) according to value of a certain descriptor, computed for each molecule
(object). In this case the similarity of two objects groups, GA and GB, should be
computed using the same formula (10).

If GA is an extracted (selected) ‘sample’ from the GB population, it is interesting
to compare GA and GB. In this case a version of the formula (10) can be used as
‘Representative Sample Index’ RSI.

RSI = RA·RB (12)

where
if SEsample ≤ SEsample+population then RA = SEsample/SEsample+population else RA =

SEsample+population/SEsample
if SEpopulation ≤ SEsample+population then RB = SEpopulation/SEsample+population else

RB = SEsample+population/SEpopulation
SEsample is computed by formula (4) using NA objects in sample
SEpopulation is computed by formula (4) using NB objects in population
SEsample+population is computed by formula (4) using NA + NB objects in sample +

population aggregate.
The value of RSI is within [0, 1] range.
Another manner of analysis involves computing of SIM for each pair of molecules

(objects). One can find empirically a limit value for similarity, which can be used to
decide whether two molecules (objects) should be included or not into the same class.
Consequently, one can divide the analyzed group into ‘(chemical) clusters’ which are
not defined beforehand. In this case, we propose to compute the similarity of two
clusterized groups using the same formula (10).

Clusterization of any group of objects is a difficult task [24] and it is not the subject
of this paper. After (chemical) clusterization there are clusters which include many
molecules (objects) and other clusters which include only few molecules (objects).
The molecules (objects) included in very small ‘(chemical) clusters’ are similar with
only few other molecules (objects) and can be considered ‘(chemical) outliers’.

The ‘number of molecular fragments’ is a specific descriptor. The fingerprints of
this descriptor are usually compared by formula (1). Here we used formula (10).

We used as virtual fragmentation procedure a previously presented method [19].
According to quoted method, two bonded (by a chemical bond with computed B bond
order) heavy atoms (and bonded hydrogen atoms) are included within the same frag-
ment if B exceeds a limit value, empirically established. In order to compute B we
have used the PM6 method [20], after geometry optimization.

The identified molecular fragments were placed into classes (categories) accord-
ing to the proposed criteria in Table 1. As a rule, these criteria differentiate

123



J Math Chem (2011) 49:2330–2344 2335

Table 1 Criteria to place molecular fragments into classes

Aa Bb Cc Class (category) Examples

0 0 0 I F, Br

1 0 0 II C, CH, CH3

2–4 0 0 III C=C, C≡CH

>4 0 0 IV C6H5, C6H4

1 >0 0 V O, N, S

2–4 >0 0 VI C=O, C≡N, NCS, NO2, SO2, PO, N=N, N3

>4 >0 0 VII C4H3O (furyl), C5H4N (pyridinyl)

1 >0 >0 VIII OH, NH2, SH

2–4 >0 >0 IX NHCO, CH=NH

>4 >0 >0 X C4H3NH (2-pyrrolyl)
a A is number of fragment atoms different from hydrogen
b B is number of fragment atoms different from hydrogen, carbon and halogen
c C is number of Z–H bonds in fragment, where Z is a non-carbon atom
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    Fluoxtine Chloramphenicol
56775-88-3     54910-89-3 56-75-7

Crufomate     Phoxim
299-86-5 14816-18-3

  Zimelidine

Fig. 1 The chemical structure of the analyzed molecules

‘saturated’/‘non-saturated non-aromatic’/‘aromatic’ fragments and ‘hydrogen-accep-
tor’/‘hydrogen-donor-acceptor’ fragments.

3 Commented results

Present section includes an example of chemical similarity computation.
In formula (4) we used the natural logarithm, because it is default option for lot

most software. However, this aspect is unimportant because the formula (10) uses
ratios. Figure 1 presents the analyzed molecules and it’s their Register Numbers.
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Table 2 Some basic features of the analyzed molecules

Mol ID Name Chemical formula Number of atoms Number of edges
in kenograph

Number vertices
in kenograph

#1 Zimelidine C16H17BrN2 36 20 19

#2 Fluoxtine C17H18F3NO 40 24 22

#3 Chloramphenicol C11H12Cl2N2O5 32 20 20

#4 Crufomate C12H19ClNO3P 37 18 18

#5 Phoxim C12H15N2O3PS 34 19 19

Table 3 Shannon Entropy
of atomic numbers

a Computed by formula (4)

Class Mol ID

#1 #2 #3 #4 #5

Carbon 16 17 11 12 12

Hydrogen 17 18 12 19 15

Fluorine 3

Chlorine 2 1

Bromine 1

Nitrogen 2 1 2 1 2

Oxygen 1 5 3 3

Phosphorus 1 1

Sulphur 1

SEa 0.9748 1.1017 1.3715 1.2039 1.3169

Identifying of the most suitable molecular descriptors for the evaluation of chemical
similarity is a difficult task and it is not subject of this paper. Here we have used the
‘atomic number’, ‘chemical bond type in kenograph’ and ‘vertex degree in kenograph’
because the values of these descriptors can be easily placed into classes. In addition,
we have used the values of the ‘number of molecular fragments’ descriptor, according
to the classes in Table 1.

According to the ‘atomic number’ value, the atoms in the analyzed molecule were
placed into several classes (carbon, hydrogen, nitrogen, fluorine etc.).

Kenograph is the molecular graph including heavy atoms (different from hydro-
gen) only. On this graph the vertices are atoms (irrespective of type) and the edges are
chemical bonds (irrespective of type).

According to the computed bond order value, the chemical bonds in the analyzed
kenographs were placed into four classes (single, aromatic, double and triple).

The degree of certain vertex is the number of vertices bonded to the vertex. Accord-
ing to the ‘vertex degree in kenograph’ value (1, 2, 3 or 4), the atoms were placed into
four classes.

Some basic features of molecules in Fig. 1 are presented in Table 2.
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Table 4 Similarity of
molecules aggregates

a Computed by formula (4) for
each aggregate
b Computed by formula (10)

Class Pair

(#1,#2) (#1,#3) (#1,#4) (#1,#5) (#2,#3)

(a)

Carbon 33 27 28 28 28

Hydrogen 35 29 36 32 30

Fluorine 3 3

Chlorine 2 1 2

Bromine 1 1 1 1

Nitrogen 3 4 3 4 3

Oxygen 1 5 3 3 6

Phosphorus 1 1

Sulphur 1

SEa 1.0884 1.2545 1.1548 1.2050 1.3035

SIM b
1 0.8847 0.7108 0.8096 0.7403 0.8034

(#2,#4) (#2,#5) (#3,#4) (#3,#5) (#4,#5)

(b)

Carbon 29 29 23 23 24

Hydrogen 37 33 31 27 34

Fluorine 3 3

Chlorine 1 3 2 1

Bromine

Nitrogen 2 3 3 4 3

Oxygen 4 4 8 8 6

Phosphorus 1 1 1 1 2

Sulphur 1 1 1

SEa 1.2077 1.2612 1.3095 1.3916 1.2824

SIM b
1 0.9094 0.8367 0.8778 0.9326 0.9141

Table 5 Shannon Entropy of
bond orders

a Computed by formula (4)

Mol ID Single Aromatic Double Triple SEa

#1 7 12 1 0.8237

#2 10 13 0.6846

#3 10 10 0.6931

#4 11 7 0.6682

#5 10 7 1 1 1.0156
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Table 6 Similarity of molecules aggregates

Pair Single Aromatic Double Triple SEa SIM b
2

(#1, #2) 17 25 1 0.7697 0.8312

(#1, #3) 17 22 1 0.7847 0.8414

(#1, #4) 18 19 1 0.7962 0.8113

(#1, #5) 17 19 2 1 0.9586 0.8111

(#2 #3) 20 23 0.6907 0.9876

(#2, #4) 21 20 0.6928 0.9532

(#2, #5) 20 20 1 1 0.8846 0.6741

(#3, #4) 21 17 0.6876 0.9641

(#3, #5) 20 17 1 1 0.8923 0.6824

(#4, #5) 21 14 1 1 0.8844 0.6579
a Computed by formula (4) for each aggregate
b Computed by formula (10)

Table 7 Shannon Entropy of vertices degrees

Mol ID Degree 1 Degree 2 Degree 3 Degree 4 SEa

#1 3 11 5 0.9592

#2 4 13 4 1 1.0713

#3 7 6 7 1.0961

#4 7 6 3 2 1.2763

#5 4 12 2 1 1.0102
a Computed by formula (4)

The values of the Shannon Entropy and the values of the similarity, computed using
the values of ‘atomic number’ descriptor, are presented in Tables 3 and 4a, b. Table 3
includes the number of atoms having certain atomic number.

The values of the Shannon Entropy and the values of the similarity, computed using
the values of ‘chemical bond type in kenograph’ descriptor, are presented in Table 5
and Table 6. Table 5 includes the number of bonds having a certain type, according to
the computed bond order. The chemical bonds Ar–O in Fluoxtine, N–O in NO2, N–C
in amide group, C–O in amide group, P–O in Crufomate and P–S in Phoxim were
computed as ‘aromatic’, according to the TOPAZ algorithm [25].

The values of the Shannon Entropy and the values of the similarity, computed
using the values of ‘vertex degree in kenograph’ descriptor, are presented in Table 7
and Table 8. Table 7 includes the number of vertices having certain degree.

Figure 2 presents the identified molecular fragments in the analyzed molecules.
The values of the Shannon Entropy and the values of the similarity, computed using

the values of ‘number of molecular fragments’ descriptor, are presented in Tables 9
and 10a, b. Table 9 includes the number of fragments in each molecule, in each class.

The values of the ‘total’ similarity are presented in Table 11.
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Table 8 Similarity of molecules aggregates

Pair Degree 1 Degree 2 Degree 3 Degree 4 SEa SIM b
3

(#1, #2) 7 24 9 1 1.0387 0.8953

(#1, #3) 10 17 12 1.0736 0.8752

(#1, #4) 10 17 8 2 1.1998 0.7515

(#1, #5) 7 23 7 1 1.0229 0.9260

(#2 #3) 11 19 11 1 1.1496 0.8885

(#2, #4) 11 19 7 3 1.2079 0.8394

(#2, #5) 8 25 6 2 1.0991 0.8959

(#3, #4) 14 12 10 2 1.2382 0.8588

(#3, #5) 11 18 9 1 1.1462 0.8429

(#4, #5) 11 18 5 3 1.1853 0.7916
a Computed by formula (4) for each aggregate
b Computed by formula (10)

Table 9 Shannon Entropy of
molecular fragments

a Computed by formula (4)

Class Mol ID

#1 #2 #3 #4 #5

I 1 3 2 1

II 3 5 4 6 4

III 1

IV 1 1 1 1 1

V 1 2 3

VI 1 1 3

VII 1 1

VIII 1 2 1

IX 1

X

SEa 1.6675 1.3667 1.6417 1.4735 1.2945

According to the values of similarity in Table 11, the analyzed pairs of molecules
can be ordered in several ways. We observe that the order is quit sensitive to the utilized
set of descriptors.

Using SIM4 similarity only:
(#3, #4) > (#4, #5) > (#1, #4) > (#2, #3) > (#2, #4) > (#1, #2) > (#1, #5) >

(#1, #3) > (#3, #5) > (#2, #5).

Using SIM1 and SIM3 non-similarities:
(#1, #2) > (#3, #4) > (#3, #5) > (#2, #4) > (#2, #5) > (#2, #3) > (#4, #5) >

(#1, #4) > (#1, #5) > (#1, #3).

Using SIM1, SIM2 and SIM3 non-similarities:
(#3, #4) > (#2, #4) > (#1, #2) > (#2, #3) > (#1, #4) > (#1, #5) > (#1, #3) >

(#3, #5) > (#2, #5) > (#4, #5).
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Fig. 2 Identified molecular fragments in the analyzed molecules

Using SIM1, SIM2, SIM3 and SIM4 non-similarities: (#3, #4) > (#2, #4) >

(#1, #2) > (#2, #3) > (#1, #4) > (#1, #5) > (#1, #3) > (#3, #5) > (#4, #5) >

(#2, #5)

Table 12 includes data useful for computing the Tanimoto coefficient by formula
(1), with a view to compare. The values of nA, nB and nAB are inferred from data
in Table 9. The number nA is, in fact, the number of non-empty classes in molecule
A, nB is the number of non-empty classes in molecule B and nAB is the number of
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Table 10 Similarity of
molecules aggregates

a Computed by formula (4) for
each aggregate
b Computed by formula (10)

Class Pair

(#1,#2) (#1,#3) (#1,#4) (#1,#5) (#2,#3)

(a)

I 4 3 2 1 5

II 8 7 9 7 9

III 1 1 1 1

IV 2 2 2 2 2

V 1 1 3 4

VI 1 1 3 1

VII 2 1 1 1 1

VIII 1 2 1 3

IX 1 1

X

SEa 1.6311 1.9081 1.7036 1.6892 1.6136

SIM b
4 0.8196 0.7519 0.8466 0.7566 0.8325

(#2,#4) (#2,#5) (#3,#4) (#3,#5) (#4,#5)

(b)

I 4 3 3 2 1

II 11 9 10 8 10

III

IV 2 2 2 2 2

V 2 3 2 3 5

VI 1 3 2 4 4

VII 1 1

VIII 2 1 3 2 1

IX 1 1

X

SEa 1.5668 1.6797 1.6670 1.7440 1.4831

SIM b
4 0.8203 0.6271 0.8705 0.6987 0.8671

non-empty classes in A molecule and molecule B. Used in this manner Tanimoto coef-
ficient compares the presence/absence of fragments classes, not the presence/absence
of molecular fragments themselves.

Based on the values of Tanimoto similarity in Table 12 the analyzed pairs of mol-
ecules can be ordered.

(#3, #4) > (#4, #5) > (#1, #2) ∼ (#2, #3) ∼ (#2, #4) > (#1, #4) > (#1, #5) ∼
(#3, #5) > (#1, #3) > (#2, #5).

Further on the paper presents two non-chemical examples of SIM computation as
‘Representative Sample Index’.
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Table 11 The values of the ‘total’ similarity

Pair SIM1 SIM2 SIM3 SIM4 SIM13a

total SIM123b

total SIM1234c

total

(#1, #2) 0.8847 0.8312 0.8953 0.8196 0.8847 0.8312 0.8196

(#1, #3) 0.7108 0.8414 0.8752 0.7519 0.7108 0.7108 0.7108

(#1, #4) 0.8096 0.8113 0.7515 0.8466 0.7515 0.7515 0.7515

(#1, #5) 0.7403 0.8111 0.9260 0.7566 0.7403 0.7403 0.7403

(#2 #3) 0.8034 0.9876 0.8885 0.8325 0.8034 0.8034 0.8034

(#2, #4) 0.9094 0.9532 0.8394 0.8203 0.8394 0.8394 0.8203

(#2, #5) 0.8367 0.6741 0.8959 0.6271 0.8367 0.6741 0.6271

(#3, #4) 0.8778 0.9641 0.8588 0.8705 0.8588 0.8588 0.8588

(#3, #5) 0.9326 0.6824 0.8429 0.6987 0.8429 0.6824 0.6824

(#4, #5) 0.9141 0.6579 0.7916 0.8671 0.7916 0.6579 0.6579
a Identified by criterion (11) using SIM1 and SIM3 non-similarities
b Identified by criterion (11) using SIM1, SIM2 and SIM3 non-similarities
c Identified by criterion (11) using SIM1, SIM2, SIM3 and SIM4 non-similarities

Table 12 The value of
Tanimoto coefficient

Pair nA nA nAB T

(#1, #2) 6 5 4 0.571

(#1, #3) 6 6 3 0.333

(#1, #4) 6 6 4 0.500

(#1, #5) 6 4 3 0.429

(#2 #3) 5 6 4 0.571

(#2, #4) 5 6 4 0.571

(#2, #5) 5 4 2 0.286

(#3, #4) 6 6 5 0.714

(#3, #5) 6 4 3 0.429

(#4, #5) 6 4 4 0.667

Table 13 includes imaginary data regarding a number of objects in each group, in
each class.

According to the formula (12) Representative Sample Index for Sample #1 is
RSI1 = 1.6120/1.89081.8908/1.9294 = 0.8355. The Representative Sample Index
for Sample #2 is RSI2 = 1.7946/1.93051.9294/1.9305 = 0.9291. Therefore, we can
say that the Sample #2 is “more representative” than Sample #1 for the analyzed pop-
ulation. In addition, we observe that, according to the formula (10), the similarity of
Sample #1 and Sample #2 is low enough (SIM12 = 1.6120/1.92941.7946/1.9294 =
0.7771).

Table 14 includes data taken from literature [26], regarding age, sex and mean
weight (kilograms) in groups of children and teenagers from USA.

The size of GA and GB groups is slightly different (NA = 4, 247 male and NB =
4, 119 female). To divide the above group of 36 values of mean weight into classes
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Table 13 Imaginary data regarding objects groups

Groups Classes SEa

I II III IV V VI VII VIII IX X XI

Population 1 5 4 12 9 32 0 5 5 8 3 1.9294

Sample #1 1 2 0 5 0 17 0 3 4 8 0 1.6120

Sample #2 0 3 4 7 9 15 0 2 1 0 3 1.7946

Sample #1 + population 2 7 4 17 9 49 0 8 9 16 3 1.8908

Sample #2 + population 1 8 8 19 18 47 0 7 6 8 6 1.9305
a Computed by formula (4)

Table 14 Data regarding two young people groups

Age Male group size GA mean weight Female group size GB mean weight

2 262 13.7 248 13.3

3 216 15.9 178 15.2

4 179 18.5 191 17.9

5 147 21.3 186 20.6

6 182 23.5 171 22.4

7 185 27.2 196 25.9

8 214 32.7 184 31.9

9 174 36.0 183 35.4

10 187 38.6 164 40.0

11 182 43.7 194 47.9

12 299 50.4 316 52.0

13 298 53.9 321 57.7

14 266 63.9 324 59.9

15 283 68.3 266 61.1

16 306 74.4 273 63.0

17 313 75.6 256 61.7

18 284 75.6 243 65.2

19 270 78.2 225 67.9

we identified the maximum value 78.2, the minimum value 13.3 and calculated the
difference 78.2 – 13.3 = 64.9. Using a tenth of this difference we divided [13.3, 78.2]
range in ten classes (kde f = 10).

Class i includes the values within [13.3+(i−1)·6.49, 13.3+i ·6.49] range. Table 15
presents the number of youngsters in each class, in each group and the computed value
for the Shannon Entropy.

Using the computed values of SE and formula (10) we calculated the similarity of
groups GA and GB(SIM = 0.8746). Within the analyzed population, according to for-
mula (12), the ‘Representative Sample Index’ of the male group GA(RSIA = 0.8448)
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Table 15 The computed value of Shannon Entropy for youngster groups

Class Groups

GA male sample GB female sample Population GA + population GB + population

1 657 617 1,274 1,931 1,891

2 329 553 882 1,211 1,435

3 399 184 583 982 767

4 361 183 544 905 727

5 182 164 346 528 510

6 299 510 809 1,108 1,319

7 298 321 619 917 940

8 266 1,362 1,628 1,894 2,990

9 283 225 508 791 733

10 1,173 1,173 2,346 1,173

SEa 2.0620 1.8034 1.9980 2.2084 2.1652
a Computed by formula (4)

is higher than the ‘Representative Sample Index’ of the female group GB(RSIB =
0.7686), from the point of view of mean weight.
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